Mathematical structures in logic Exercise sheet 7

Esakia duality; Jónsson's Lemma; locally finite, finitely generated and approximable varieties; Kripke completeness

May 8, 2017

1 Esakia duality

- (a) Compute the dual Esakia space of the Rieger-Nishimura lattice. (*Hint:* This space is often referred to as the Rieger-Nishimura ladder).
- (b) Determine the Boolean algebra of regular elements of the Rieger-Nishimura lattice. (Compare the result with exercise 1.g from the previous exercise sheet).

2 Jónsson's Lemma

- (a) Show that the variety of all Heyting algebras is not finitely generated;
- (b) Determine the collection of subdirectly irreducible Heyting algebras in the variety $V(\mathbf{A})$ generated by \mathbf{A} when \mathbf{A} is

$$C_n$$
, 2 , $(2 \times 2) \oplus 1$, $1 \oplus (2 \times 2)$, $(2 \times 3) \oplus 1$,

where C_n is a chain of *n*-elements and $-\oplus 1$ and $1\oplus -$ denotes the operations of adding a new top and bottom element respectively. (*Hint:* You might find Esakia duality helpful for this.)

(c) Use exercise 2b to determine the lattice of subvarieties of the variety of Heyting algebras $V(\mathbf{A})$, for \mathbf{A} as in Exercise 2b.

Let Ω be a Signature.

- (d) Let \mathbb{V} be a congruence distributive variety of Ω -algebras and let $\mathbf{A}, \mathbf{B} \in \mathbb{V}$ be a pair of non-isomorphic subdirectly irreducible Ω -algebras with \mathbf{A} finite. Show that if $|A| \leq |B|$ then there exists an equation that holds in \mathbf{A} but fails in \mathbf{B} .
- (e) Let \mathbb{V} be a variety of Ω -algebras. Show that the collection of subvarieties of \mathbb{V} forms a (bounded) lattice.
- (f) Show that if \mathbb{V}_1 , \mathbb{V}_2 are subvarieties of some congruence distributive variety of Ω -algebras then $(\mathbb{V}_1 \vee \mathbb{V}_2)_{si} = (\mathbb{V}_1)_{si} \cup (\mathbb{V}_2)_{si}$. (*Hint*: use Los's Theorem¹.) Does the corresponding statement hold true for arbitrary joins as well?
- (g) Show that if \mathbb{V} is a congruence distributive variety of Ω -algebras then the lattice $\Lambda(\mathbb{V})$ of subvarieties of \mathbb{V} is a distributive lattice.

¹Recall that Los's Theorem entails that $\Pi_{i\in I}\mathbf{A}_i/\mathcal{U}\models t\approx s$ iff $\{i\in I\colon \mathbf{A}_i\models t\approx s\}\in \mathcal{U}$, for all sets of algebras $\{\mathbf{A}_i\}_{i\in I}$ and all ultrafilters \mathcal{U} on I.

3 Finitely approximable varieties

(a) Let Ω be a signature and let \mathcal{K} be a class of Ω -algebras. An Ω -algebra \mathbf{A} is residually finite in \mathcal{K} iff for all $x, y \in A$ with $x \neq y$ there exist a finite algebra $\mathbf{B} \in \mathcal{K}$ together with an onto Ω -homomorphism $h \colon \mathbf{A} \twoheadrightarrow \mathbf{B}$ such that $h(x) \neq h(y)$.

Let \mathbb{V} be a variety of Ω -algebras and let $\mathbf{A} \in \mathbb{V}$. Show that the following are equivalent

- (i) The algebra **A** is residually finite in \mathbb{V} ;
- (ii) The intersection of all congruence with finite index is trivial, i.e.,

$$\Delta_A = \bigcap \{ \theta \in \operatorname{Con}(\mathbf{A}) \colon |\mathbf{A}/\theta| < \aleph_0 \};$$

- (iii) The algebra **A** embeds into a product of finite V-algebras.
- (b) Show that a variety of Ω -algebras \mathbb{V} is finitely approximable iff all finitely generated free \mathbb{V} -algebras are residually finite in \mathbb{V} .
- (c) Describe the subdirectly irreducible Ω -algebras which are residually finite.

4 Locally finite and finitely generated varieties

Let Ω be any signature.

- (a) Show that a variety of Ω -algebras is finitely generated iff it is generated by a single finite Ω -algebra.
- (b) Let \mathbb{V} be a variety of Ω -algebras. Show that the following are equivalent
 - (i) The variety V is locally finite;
 - (ii) All the finitely generated free V-algebras are finite;
 - (iii) Every member of V is locally finite².
- (c) Show that in general

finitely generated \implies locally finite \implies finitely approximable.

with both of the implications being strict. (*Hint:* Showing that the first implication is strict is a bit tricky. You might want to consider the variety \mathbb{LC} of pre-linear Heyting algebras. Moreover, you may use that if $\mathbf{A} \cong \prod_{i \in I} \mathbf{A}_i$ for a set of algebras $\{\mathbf{A}_i\}_{i \in I}$ such that for each $n \in \omega$ there exist only finitely many non-isomorphic finitely generated subalgebras of the algebras $\{A_i\}_{i \in I}$, then \mathbf{A} is locally finite.)

5 Discrete duality and logic

Let $\mathfrak{S}=(W,\leq)$ be an intuitionistic Kripke frame, i.e., a poset. A valuation on \mathfrak{S} is a function $V:\mathsf{Prop}\to\mathsf{Up}(W,\leq)$, where Prop is a collection of propositional letters. A pointed intuitionistic Kripke model is an intuitionistic Kripke frame (W,\leq) together with a valuation on (W,\leq) and an element $w\in W$. We define a relation \Vdash (pronounced "forces")

²An algebra is called *locally finite* if all of its finitely generated subalgebras are finite.

between pointed intuitionistic Kripke models and formulas of propositional intuitionistic logic as follows:

```
\begin{split} (\mathfrak{S},V,w) \Vdash \bot & \text{never;} \\ (\mathfrak{S},V,w) \Vdash p & \text{iff} & w \in V(p); \\ (\mathfrak{S},V,w) \Vdash \phi \wedge \psi & \text{iff} & (\mathfrak{S},V,w) \Vdash \phi \text{ and } (\mathfrak{S},V,w) \Vdash \psi; \\ (\mathfrak{S},V,w) \Vdash \phi \vee \psi & \text{iff} & (\mathfrak{S},V,w) \Vdash \phi \text{ or } (\mathfrak{S},V,w) \Vdash \psi; \\ (\mathfrak{S},V,w) \Vdash \phi \rightarrow \psi & \text{iff} & \forall v \in W((w \leq v \text{ and } (\mathfrak{S},V,v) \Vdash \phi)) \implies (\mathfrak{S},V,v) \Vdash \psi). \end{split}
```

We write $(\mathfrak{S}, V) \Vdash \phi$ iff $(\mathfrak{S}, V, w) \Vdash \phi$ for all $w \in W$ and finally we write $\mathfrak{S} \Vdash \phi$ iff $(\mathfrak{S}, V) \Vdash \phi$ for all valuations V on \mathfrak{S} .

An intermediate logic L is $Kripke\ complete$ iff there exists a class of intuitionistic Kripke frames K such that

$$\forall \phi (\phi \in L \iff \forall \mathfrak{S} \in \mathcal{K}(\mathfrak{S} \Vdash \phi)).$$

- (a) Let $\mathfrak{S} = (W, \leq)$ be an intuitionistic Kripke frame and let ϕ be a formula in the language of propositional intuitionistic logic. Show that $\mathfrak{S} \Vdash \phi$ iff $\mathfrak{S}^+ \models \phi \approx 1$.
- (b) Let L be an intermediate logic. Show that L is Kripke complete iff the corresponding variety of Heyting algebras \mathbb{V}_L is generated by a collection of Heyting algebras of the form \mathfrak{S}^+ . Such varieties are called *complete varieties*.
- (c) Show that if \mathbb{V}_L is variety of Heyting algebras which is finitely approximable then the corresponding intermediate logic L is Kripke complete.
- (d) Let L be an intermediate logic. Show that L is Kripke complete iff the corresponding variety of Heyting algebras \mathbb{V}_L is generated by a collection of complete and completely join-generated Heyting algebras. (*Hint:* Use Exercise 5d. from the previous exercise sheet.)

6 MacNeille completions

Let P be a poset and for $S \subseteq P$ let L(S) and U(S) be the set of all lower and upper bounds of S, respectively. A subset $S \subseteq P$ is called a *normal ideal* if S = L(U(S)). Recall that a lattice-completion $j \colon \mathbf{L} \hookrightarrow \mathbf{C}$ is join-regular (meet-regular) if j preserves arbitrary existing joins (meets). Moreover, we say that \mathbf{L} is join-dense (meet-dense) in \mathbf{C} if every element of C is a join (meet) of elements from L.

- (a) Let **L** be a lattice. Show that the collection $\mathfrak{I}_N(\mathbf{L})$ of normal ideals of **L** is a complete lattice.
- (b) Let **L** be a lattice. Show that $\iota \colon \mathbf{L} \to \mathfrak{I}_N(\mathbf{L})$ given by $a \mapsto \downarrow a$ is a regular lattice embedding, i.e., both join- and meet-regular;
- (c) Let **L** be a lattice. Show that $\mathfrak{I}_N(\mathbf{L})$ is (isomorphic to) the MacNeille completion of **L**;
- (d) Let **L** be a lattice and let $j: \mathbf{L} \hookrightarrow \mathbf{C}$ be a completion. Show that j is join-regular (resp. meet-regular) if **L** is meet-dense (resp. join-dense) in **C**.
- (e) Compute the MacNeille completion of the Boolean algebra $FC(\omega)$ of the finite and cofinite subsets of ω ;
- (f) Let \mathbf{D} be a distributive lattice. Show that if \mathbf{D} is a Heyting algebra then so is the MacNeille completion $\overline{\mathbf{D}}$ with Heyting implication given by;

$$x \to_{\overline{\mathbf{D}}} y = \bigwedge \{a \to_{\mathbf{D}} b \colon a \le x, y \le b\};$$

